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Executive Summary 

Tropospheric ozone is produced in the planetary boundary layer through a series of non-linear 
reactions between oxides of nitrogen (NOx) and Volatile Organic Compounds (VOCs). Reliable 
emissions inventories are key to accurate ozone modeling. NOx concentrations are known to 
respond quickly to emission changes due to the very short lifetime of NOx in the atmosphere and 
a linear relationship with emissions. NOx emissions from mobile and point sources have 
significantly decreased over time due to improvement in fuel technology and effective emissions 
control technologies and strategies. These reductions are well corroborated by satellite and in-
situ observations. These emissions reductions imply that the National Emission Inventory (NEI) 
used in model simulations needs to be updated for use to represent current emissions. A robust 
procedure to update the emission inventory is to use additional NO2 observations and a 3-D 
modeling framework with a realistic representation of sensitivity of NOx levels to emissions. 
These improvements can be achieved using the inverse modeling technique which is useful when 
a direct quantity (here, emissions) is not measurable. 

The concept of an inverse problem involves using physical laws to back-calculate the quantity of 
interest (“a posteriori” emissions) from known or partially-known approximated states (“a priori” 
ambient measurements or satellite retrievals). Updating emission inventories using satellite 
measurements is a common application for which remote sensing measurements are cost-
effective. Due to spatial inhomogeneity in distributions of NOx concentrations and limited 
number of monitoring sites, satellite remote sensing of tropospheric NO2 is widely used for this 
purpose. The biggest advantage of using satellite data is the high spatial coverage that makes it 
possible to update emission inventories over large domains. The National Aeronautics and Space 
Administration (NASA) records this data through its Ozone Monitoring Instrument (OMI) 
aboard the Aura satellite; tropospheric NO2 concentrations from this instrument (Level 2, V2.1) 
were used for this project. Several adjustments were required to remove noisy observations and 
re-grid them for our model simulation domain. These included corrections for cloud fraction, 
quality flags, solar angle and removal of a priori profile influences. Our results revealed that 
removal of a priori profile influences is crucial to obtaining accurate results. Disregarding this 
step leads to under-prediction and over-prediction of NO2 in urban and rural regions respectively. 

In this study, a Bayesian inversion of tropospheric OMI NO2 is conducted to update four source 
categories of the National Emission Inventory (NEI) 2011 (area, soil, mobile and point sources), 
as well as the total NOx inventory. Using a “Brute Force” method, the adjusted NEI-2011 
demonstrated an overall reduction in anthropogenic source categories (i.e., area, mobile and 
point) and an increase in biogenic soil emission of NOx. The largest reduction in NOx emission 
for the area source category was predicted in the center of Houston and Lake Charles city. A 
large increase in the biogenic NOx emissions (50%) was found in most rural areas. Additionally, 
the results indicated that mobile NOx emissions reduced by 30-40% in urban regions. The largest 
decrease was found for the center of Houston. The largest decrease for point source category was 
found for Lake Charles and Houston Ship Channel, ranging between 40-65%. The considerable 
decrease was mainly due to strict emissions regulations. A new simulation was performed using 
the United States Environmental Protection Agency (USEPA)’s Community Multiscale Air 
Quality (CMAQ) model using the updated total NOx emissions. The model simulation results 
were evaluated using in-situ data from independent aircraft studies and the Texas Commission 
on Environmental Quality (TCEQ)’s Continuous Ambient Monitoring Stations (CAMS) 
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network. Mean error and root mean square error (RMSE) of the model-measurement 
comparisons were reduced with the updated NOx emissions. RMSE and bias between aircraft 
NOx measurements and simulated ones are 2.4 and 6.0 ppbv for the default NEI-2011 and 1.9 
and 4.1 ppbv for the updated NEI-2011. The model-measurement comparisons using CAMs data 
indicated that, mean absolute bias and RMSE decrease by 0.8 and 1.1 ppbv from the default 
NEI-2011 to the inverse modeling updated case.   

In order to investigate the impact of NOx emissions changes on chemical conditions (i.e., NOx-
saturated or –sensitive), we calculated the HCHO/NO2 ratio before and after using inverse 
modeling. A comparison of P3-B aircraft HCHO levels to simulated values demonstrated under 
predicted HCHO levels likely resulting from biogenic model used. We did not find any 
difference in HCHO concentrations before and after using inverse modeling due to marginal 
indirect impacts of NOx on HCHO.  After updating NOx emissions using inverse modeling, most 
of the urban regions became increasingly NOx-sensitive (20-85% increases in the ratio) due to 
large decreases in anthropogenic NOx emissions. On the other hand, rural regions showed a 
transition from NOx-sensitive toward more NOx-saturated due to an increase in soil NOx 
emissions. 

We also investigated the impact of the updated inventory on ozone predictions. Overall, the 
ozone changes were small both on surface and aloft, suggesting that the Houston region is NOx 
saturated. We found statistics (before and after updating emission inventory), for correlation 
(0.74, 0.76), the Index of Agreement (IOA) (0.79, 0.80), RMSE (14.6, 14.4), MAB (12.0, 11.7) 
and MB (9.3, 9.3). This is in agreement with previous findings suggesting that other parameters 
such as VOC emissions and dry depositions should be constrained as well. Small increases in 
ozone concentrations were observed in NOx-sensitive rural areas, consistent with the increase in 
NOx in the new inventory. Additionally, we applied Objective Analysis (OA) to meteorological 
modeling using the Weather Research and Forecasting (WRF) model to constrain the modeled 
fields using in-situ data. The results indicated improvement of the simulated meteorology fields 
which provides a solid base for subsequent emission and chemistry modeling. Regarding the 
wind fields which are critical to pollutant transport, the IOA improved by 6% for U-wind and 
11% for V-wind after using OA. For temperature, the correlation coefficient increased by about 
10% while IOA rose by 8%.  
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1. Introduction 

 

1.1. Background 

Nitrogen oxides or NOx (NOx=NO+NO2) are a precursor for tropospheric ozone and particulate 
matter formation in the atmosphere (Seinfeld and Pandis, 2006), and a harmful species for the 
human respiratory system. Emissions of nitrogen oxide (NO) from anthropogenic combustion of 
fossil fuels (Noxon, 1978), biomass burning activity (van der Werf et al., 2006), soil microbial 
activity (Yienger and Levy, 1995) and lightning (Choi et al., 2009) are the major sources of NO2. 
Our previous studies focused on showing the impact of lightning and/or anthropogenic sources 
on tropospheric NOx and ozone (O3) over the continental US for the summers of 2005 and 2009. 
These have been documented in a series of publications (e.g., Choi et al., 2005, 2008a, 2008b, 
2009, Choi et al., 2012; Choi, 2014). Control technologies and strategies implemented by 
governmental regulatory agencies have significantly reduced anthropogenic ozone precursor 
emissions including NOx. Houston is a city known for its large petrochemical industrial facilities, 
located in an ozone nonattainment region. According to the EPA’s National Emissions Inventory 
(NEI) air pollutant emissions trends data, anthropogenic sources of NOx from both stationary and 
mobile sources declined by 45% in the U.S. from 2000 to 2014. Additionally, anthropogenic 
Volatile Organic Compound (VOC) emissions were reduced by 16%. Since these reductions 
have not occurred evenly, monitoring and modeling NOx levels are vital to fully understanding 
the efficiency of efforts at reducing surface ozone.  

Previous work (Choi et al., 2012; Choi, 2014; Choi and Souri, 2015; Kim et al., 2011) 
demonstrated that regional model simulations (e.g., CMAQ and WRF-Chem) are problematic in 
simulating NOx concentrations mainly due to uncertainties in emission inventories. Also, there 
could be uncertainties in the gas-phase chemistry module of the model. For example, the lifetime 
and chemical fate of alkyl nitrates for NOx simulation are still uncertain (Duncan et al., 2014). In 
a previous study (Choi and Souri, 2015), we studied how changes in anthropogenic emissions 
and have impacted (WRF-Chem) employing two modeling scenarios for September 2013. The 
first scenario using NEI-2005 showed a fair agreement between surface ozone from Continuous 
Ambient Monitoring Stations (CAMS) and model output during daytime (r = 0.63). However, 
the model significantly over-predicted surface NO2 by a factor of ~3.6. This is due to 
overestimation of NOx emissions in the inventory. This finding agreed with previous studies 
(e.g., Anderson et al., 2014, Choi, 2014, Choi et al., 2012; Kim et al., 2011). Specifically, 
Anderson et al. (2014) modeled the 2011 DISCOVER-AQ field campaign in the Baltimore-
Washington metropolitan area. They found that their CMAQ (Community Multiscale Air 
Quality) simulations using projected NEI-2005 to NEI-2011 emissions overestimated NOx 
emissions by 51–70% for mobile sources, which made up approximately 50–75% of total NOx 
emissions in the region. In the second scenario that employed NEI-2011 emissions, this 
overestimation was significantly mitigated, reaching a factor of only 1.7. The unchanged 
overestimation of surface NO2 by using NEI-2011 emphasized that an adjustment should be 
performed for future studies using this inventory. This overestimation possibly resulted from a 
high bias in mobile emissions which masks the real chemical condition of cities for conducting a 
sensitivity analysis. It also exacerbates the quantification of relative importance of NOx 

http://www.epa.gov/ttnchie1/trends/
http://www.epa.gov/ttnchie1/trends/


7 
 

emissions from other source categories such as power plants. We also compared the Ozone 
Monitoring Instrument (OMI) NO2 and formaldehyde (HCHO) concentrations to simulated 
values and found that CMAQ overestimated the NO2 column density while underestimating the 
HCHO column density. The model indicated that ozone levels reduced from the first to the 
second scenarios in Dallas (-3%) and Fort Worth (-0.5%) but increased surface ozone in Austin 
(0.7%), San Antonio (0.8%), and Houston (7%); probably resulting from underestimation of 
VOC contributions from petrochemical facilities and biogenic emissions (Pan et al., 2015), and 
overestimation of NOx in the NEI-2005 inventory that led to false low HCHO/NO2 ratios. The 
findings of this work suggest that anthropogenic emissions should be considerably adjusted prior 
to making any environmental policy solely based on model results.  

In addition to NOx and VOC emissions, several studies (e.g. Banta et al., 2005; Ngan et al., 
2012) have emphasized on the significant influences of meteorological processes on air quality. 
One way of improving meteorological simulation is to use the Objective Analysis (OA) 
technique to assimilate observational data to reduce uncertainties in the Weather and Research 
Forecasting (WRF) simulation. Using a state-of-the-art meteorological model such as WRF 
along with OA should provide an improved meteorological simulation. OA improves 
meteorological analyses of coarse resolution on the model grid by incorporating information 
from in-situ observations. This procedure is sometimes referred to as “nudging” the WRF model 
nearer to the in-situ data. Without local information, simulated meteorology (especially wind 
fields) may deviate markedly from observational data. OA has been shown to be very effective in 
rectifying modeled surface level wind fields which is a parameter critical to overall model 
performance (e.g. Ngan et al., 2012; Li et al 2015) and air quality modeling (Czader et al., 2013). 
Hence, OA must be performed very carefully to preserve model integrity. 

One way to improve the emission inventory is to use ambient observations to constrain 
emissions, i.e. to infer what must have been emitted in order to observe the measured ambient 
values. Inverse modeling of sources of atmospheric trace gases is a well-established technique 
that incorporates this inference process and has been addressed in several studies (Martin et al., 
2003; Shim et al., 2006; Kemball-Cook et al., 2015).  In this procedure, emissions are optimized 
in order to reduce differences between modeled and observed data. In our previous studies, we 
separated the continental US into six different geographic regions to analyze the uncertainty of 
anthropogenic NOx emissions modified from NEI-2005 using a 12 km grid and version 4.7.1 of 
the CMAQ model. Here, point source NOx emission reductions from 2005 to 2009, called as 
“EMIS2009” (Choi et al., 2012) were considered. Using Global Ozone Monitoring Experiment-2 
(GOME-2) NO2 retrievals for August 2009, we calculated a monthly-averaged NO2 column. We 
also estimated monthly column values of NO2 concentrations from the model with EMIS2009. 
We performed an additional simulation including remote sensing-adjusted NOx anthropogenic 
sources (e.g., Choi et al., 2008a; Choi et al., 2012). The GOME-2-adjusted NOx emissions 
(EMISGOME) were 7.8% less than EMIS2009 over the US (Choi et al., 2012). Comparisons 
between the observed and model-simulated NOx concentrations at the USEPA’s AQS (Air 
Quality System) stations over the geographic regions were conducted. We found that six regions 
had relatively high correlation coefficients (R>0.7) between hourly NOx data from observations 
and each of two chemical transport model runs. These were the Pacific (PC), Rocky Mountain 
(RM), Lower Middle (LM), Upper Middle (UM), South East (SE), and North East (NE)). For 
each of these regions, biases of the baseline model are generally higher, but biases of the model, 
including emissions changes improved in terms of Normalized Mean Bias (NMB), except for the 
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RM region (Choi, 2014). Interestingly, among six geographical regions, noticeable changes in 
biases are found over LM in US, reducing NMB from +149.7% to -1.8%. Over LM, a 
significantly large reduction in NOx biases suggests that NOx emissions from EMIS2009 were 
probably too high. Zoomed-in regionalized studies were performed over Houston to highlight 
uncertainties of EMIS2009 emissions from the previous study (Choi, 2014). The model with 
EMISGOME mitigated discrepancies between simulated and observed surface NOx over 
Houston. Large NOx emissions reductions decreased surface NOx concentrations over Houston 
which mitigate the discrepancy between surface NOx of the model and in-situ data.  

This study is motivated by the need to examine the possibility of using tropospheric NO2 
columns from the Ozone Monitoring Instrument (OMI) in order to improve the most recent 
national emission inventory for southeastern Texas. This work will develop the Bayesian inverse 
modeling which might outperform direct scaling (e.g., Kemball-Cook et al., 2015) because of 
incorporating the a priori values and associated uncertainties. In other words, we have some 
expectations of finding a reasonable optimized emissions inventory based on the a priori 
emission inventory. The emissions inventory also accounts for the uncertainty level of 
observations (which is different for different retrieval NO2 columns).  

Additionally, biogenic VOC emissions are temperature- (T) and solar radiation-dependent 
(Guenther et al., 1995). High temperatures enhance isoprene emissions leading to increased 
production of carbon monoxide (CO) and formaldehyde (HCHO) (e.g., Atkinson and Arey, 
1998; Guenther et al., 1999; Palmer et al., 2003; Millet et al., 2006). Oxidation of short-lived 
biogenic VOCs (e.g., Sharkey et al., 1999; Pfister et al., 2008) affects the distribution of HCHO 
and CO over the US (e.g., Hudman et al., 2009; Choi et al., 2010). In section 4.2 below, we 
evaluate concentrations of HCHO using measurements from the DISCOVER-AQ Houston 
aircraft project.  

Finally, changes in NOx and/or HCHO concentrations are known to affect the atmospheric 
chemical environment by changing NOx/VOC ratios. This ratio in turn affects the production rate 
of O3 (e.g., Martin et al., 2004; Duncan et al., 2010; Choi et al., 2012) and weekly cycles of 
surface O3 as shown in our previous study (Choi et al., 2012). In section 4.2 below, we 
investigate how the NOx/VOC ratio changes with changes in emissions. Particularly the 
NO2/HCHO ratio derived from remotely sensed satellite retrievals (e.g., GOME-2 and/or OMI) 
are utilized to represent the chemical environment for the time periods of interest (e.g., Choi et 
al., 2012; Choi, 2014). 

 

1.2. Objectives 

Constrainment of NOx emissions in four different source categories (e.g., area, point, mobile and 
soil) is performed for urban areas of Southeast Texas during the Deriving Information on Surface 
Conditions from Column and Vertically Resolved Observations Relevant to Air Quality 
(DISCOVER-AQ) time period (September  1 -30, 2013) In order to perform this analysis, we 
estimate a posteriori emissions using an inverse method with remote sensing data that 
incorporates error uncertainties from modeling and remote sensing. We also examine how a 
posteriori NOx emissions affect modeling biases over Southeast Texas. 

Our main objectives are: 
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1) Quantify a posteriori NOx emissions from aggregate surface a priori emissions 
from four source categories (point, area, mobile, and soil) by an inverse method using 
satellite NO2 columns. 
2) Evaluate model-simulated HCHO concentrations using in-situ aircraft 
measurements. 
3) Examine how ratios of NO2 (a proxy for NOx) to HCHO (a proxy for VOC) vary. 
4) Additionally, examine how in-situ measurement-adjusted meteorology improves 
model predictions. 
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1.3. Tasks 

The following tasks were completed for this work: 

1) Submission of Scope of Work with budget 
2) Submission of Monthly and Quarterly Technical Reports 
3) Implementation of a grid method and removal of a priori profile effects from OMI 

NO2 observations 
4) Implementation of a “Brute Force” method to conduct sensitivity runs in CMAQ 
5) Implementation of Objective Analysis to improve simulated meteorology 
6) Integration of NEI-2011 into SMOKE 
7) Implementation of an inverse modeling method 
8) Submission of a Draft Final Report and Final Report (this document) 
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2. Measurements, Methodology and Model Setup 

 

2.1. Measurements 

Surface Data  

Surface observational data were taken from the Continuous Ambient Monitoring Stations 
(CAMS) operated by the Texas Commission on Environmental Quality (TCEQ). The CAMS 
measurement network collects real-time meteorology and pollutant concentration data. Measured 
parameters differ from station to station. The station density in southeast Texas is relatively high. 
For example, the number of sites having meteorological, ozone and NOx measurements were 63, 
52 and 30 respectively in the 4-km modeling domain during the 2013 DISCOVER-AQ 
campaign. The location and status of these sites measuring ozone and nitrogen oxide are shown 
in Figure 1. CAMS data are archived by our group using a data-spider coded in Interactive Data 
Language (IDL) which queries and downloads CAMS data from the TCEQ website. 

 
Figure 1. MODIS true color image showing the location and status of the CAMS ozone and NOx 
sites during 2013 DISCOVER-AQ in our 4-km modeling domain. 

Comparison of CAMS data with model predictions is relatively straightforward. The first step is 
to extract model variables (NO and NO2

 concentrations) at the surface. The CMAQ model 
outputs binary Network Common Data format (NetCDF) files and we have developed in-house 
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code to extract data for any variable at any layer. To compare model values with observations 
from a site, we first use the latitude and longitude of a site to determine its cell location in the 
model grid, then extract the corresponding value from model output. The temporal frequency of 
model output and CAMS are both hourly, making direct comparison easy. 

 

Aircraft 

Aircraft measurements are available online from NOAA aircraft P-3B as part of the 
DISCOVER-AQ campaign. The latest version of P-3B data have over 100 parameters, merged 
from measurements from a number of instruments on board. Data are available for 10 flight days 
during the DISCOVER-AQ campaign. Aircraft data can be downloaded from the DISCOVER-
AQ website. Comparison of aircraft data with model output is more complicated but the idea is 
essentially the same: find model data matching the location and time of the aircraft 
measurements. We have developed an in-house code to match model and aircraft or ozonesonde 
data. Since aircraft data have much higher frequency (15 sec) than model output, we aggregate 
all aircraft data points in one grid cell during a 1-hour period to match model output. 

 

Remote Sensing Data 

NASA OMI tropospheric NO2 (Level 2, V2.1) data is used for this project. Level 2 data is data 
that has been post-processed from Level 1 (calibrated, georeferenced but unprocessed instrument 
data) into derived geophysical variables. Comparison of OMI data to Dutch OMI NO2 
(DOMINO) indicated that the NASA product was more consistent with validation studies. It has 
the ground footprint varying across the instrument swathe from 13×24 km2 at nadir to ~40×160 
km2 for the edge of the orbit due to wide field of view angle and swathe width (i.e., panoramic). 
A detailed description of NO2 retrieval algorithms can be found in Bucsela et al. (2013). 
Acquired spectra sensed by OMI detectors are analyzed with the Differential Optical Absorption 
Spectroscopy (DOAS) method in a fitting window from 405 nm to 465 nm. Calculated NO2 slant 
column densities are then corrected for instrumental defects. This is named “destriping” due to 
variability of effects across the orbital track. In order to convert NO2 slant column densities to 
vertical ones, Air Mass Factors (AMFs) which are functions of temperature, cloud cover, 
topography, albedo, and other factors are calculated using a pre-computed scattering-weight 
table from NASA’s TOMRAD forward vector radiative transfer model and monthly mean NO2 
profiles from the Global Model Initiative (GMI) simulation (here GEOS-CHEM in a 2.5o×2.5o 
grid). The uncertainties of the product vary from location to location and under different 
meteorological conditions. The overall error on the tropospheric vertical column density is <30% 
under clear-sky and typical polluted conditions (>1×1015 molecules cm-2) (Bucsela et al., 2013). 

Daily granules of tropospheric OMI NO2
 are available online at a NASA website. 

http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omno2.  

Three important steps in preprocessing are: 

1) Masking pixels having low quality 

http://www-air.larc.nasa.gov/missions/discover-aq/P3B-extract.tx2013.html
http://www-air.larc.nasa.gov/missions/discover-aq/P3B-extract.tx2013.html
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/collectionlist.pl?keyword=omno2
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The common thresholds for performing the mask are: Solar Zenith Angle 0 ≤ SZA ≤ 85⁰, 
Vertical Column Density (VCD) Quality Flags=0, Root Mean Squared Error of Fit < 0.0003, 
Terrain Reflectivity < 30% and Cloud Fraction < 20%. Note that pixels which do not satisfy the 
criteria mentioned in the sections below are filtered out in this study. 

2) Removing the vertical a priori profile impact from the granules to conduct an “apples-to-
apples” comparison between model predictions and satellite data: A direct comparison of model 
output to OMI NO2 requires that an a priori vertical profile of NO2 in the OMI retrieval 
algorithm (here 2.5o×2.5o monthly averaged profiles from GEOS-Chem) be minimized. Although 
this coarse initial approximation could bias results, the main problem lies in applying an average 
semi-polluted profile over the large grid cell that encompasses both urban and rural regions, 
resulting in an underestimation of NO2 vertical columns in urban regions and an overestimation 
in rural regions (Russell et al., 2011). Following the approach described in Duncan et al. (2014), 
we first use the variable called “scattering weight” provided for various pressure levels from the 
surface to the top of the atmosphere that is included in OMI NO2 data files. We sum over all 
model layers the product of the scattering weight and model partial column (molecules cm-2) in 
each model layer (up to the tropopause pressure provided in OMI Hierarchical Data Format 
(HDF) file).  This sum divided by vertical column density of the model is called the air mass 
factor (AMF) of the model (AMFmodel). Subsequently, we divide the product of VCD and AMF 
of satellite data from the HDF data file by AMFmodel to obtain a modified form of vertical column 
density of the satellite through the following equation (e.g., Martin et al., 2003; Duncan et al., 
2014): 

VCD’satellite = (VCDsatellite×AMFsatellite)/AMFmodel    (1) 

Now we can directly compare VCD’satellite to model output. A bilinear interpolation method is 
used to co-register pixels between the satellite and model. 

3) Gridding granules in high spatial resolution 

As outlined earlier, pixels located far from nadir experience very poor spatial resolution. In order 
to make a smooth and uniform gridding, a recent novel method (Kuhlmann et al., 2014) is 
deployed. Using a parabolic spline method in this new approach, NO2 maps become smoother 
and pixels at the extremities of scan line are more accurately reconstructed. Traditionally, 
oversampling was the main approach to ensure high spatial resolution for regional analysis. 
Here, this approach is used for the first time in the field of inverse modeling without extensive 
oversampling. 
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2.2. Inverse Modeling 

Inverse modeling is a standard tool for combining observations of atmospheric composition with 
knowledge of atmospheric processes (e.g. transport, chemistry) to derive quantitative constraints 
on emissions to the atmosphere. The forward model chosen for our study is the CMAQ’s 
Chemistry Transport Model (CCTM). This model solves the continuity equation to predict 
concentrations as a function of emissions. The inverse model then optimizes emission estimates 
by fitting the CTM to observed concentrations, subject to error weighting and a priori 
information on emissions. One approach is to define an optimal value of emissions as that which 
minimizes an error-weighted least squares (chi-square) scalar cost function derived from Bayes’ 
theorem with the assumption of Gaussian errors. Generally, in this approach, we are looking to 
relate the probability density function (pdf) of observations (in this case ambient measurements 
or satellite retrievals) to that of the unknowns (emissions). One reason to consider the pdf is that 
there may be some a priori information about the unknowns (here original NEI-2011) which can 
be used to constrain the solution as a virtual measurement. 

An ordinary least-squares inversion is susceptible to amplifying noise in observations due to 
mapping directly the unknowns to observations without having any knowledge of the unknown 
quantity a priori, i.e. with no constraints. The Bayesian approach is theoretically sound since we 
have some a priori expectation or understanding of the unknowns. Since the a priori knowledge 
is not zero (we have a very thorough but moderately inaccurate inventory), the first iteration can 
contribute to reducing estimation error. One concern is that the a priori estimate is not always 
reliable so that using it might lead to erroneous results. However, the level of imperfection of the 
a priori estimate can itself be expressed as a pdf. The Bayesian inversion method incorporates 
these effects. According to Bayes’ theorem, the a posteriori pdf of unknowns for a measurement, 
P (x|y) (or the pdf of x given some knowledge about y), is given by: 

𝑃𝑃(𝑥𝑥|𝑦𝑦) =
𝑃𝑃(𝑦𝑦|𝑥𝑥)𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑦𝑦)
 (2) 

Solving for the left hand side is the objective of this study: to update the a priori estimate P(x) of 
unknowns with knowledge from observations (y). P (y|x) (the pdf of y given x) describes the 
knowledge of y that would be estimated if the unknown is x. This can be obtained by the forward 
model and the statistical description of error in the observations. P(y), the pdf of y, can be 
calculated by integrating the expression for P (y|x) P(x) over all x so that it can be regarded as a 
normalizing factor. By assuming that NOx emissions and tropospheric NO2 concentrations are 
linearly correlated and all of the pdfs are Gaussian, we obtain the maximum probability value for 
x.  

The relationship between the observation vector y (here OMI) and state vector x (here 
emissions) can be described as: 

𝑦𝑦 = 𝐾𝐾𝑥𝑥 + 𝜀𝜀  (3) 
Where the K matrix (Jacobian matrix) represents NOx sensitivities to the state vector defined by 
the CMAQ model, and ɛ is the error term. In order to calculate the Jacobian matrix for each 
source category, we employ a “Brute Force” method. In this method, sensitivity is measured 
based on the changes in corresponding gas concentration (NO2) respect to emission changes 
(NOx). Mathematically, the sensitivity can be expressed by: 
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𝑆𝑆 =
𝑁𝑁𝑁𝑁2+𝑑𝑑 − 𝑁𝑁𝑁𝑁2−𝑑𝑑

2𝑑𝑑
 

 
(4) 

Where d is the fraction of change and NO2 is the simulated tropospheric NO2 column obtained 
from OMI. We set d to 100% which means two simulations: one with double NOx emissions and 
one without NOx emissions conducted for each source category, as well as total emissions. The 
Decoupled direct method (DDM) which is able to calculate local gradients of gases to emissions 
can also be used. Although the underlying theory of DDM is sound and has appeared to work 
better than the Brute-Force in some cases resulting from possible noise or numerical diffusion 
(e.g., Napelenok et al., 2006), our tests demonstrated that both methods generate close results in 
case of sensitivity of NO2 concentrations to NOx emissions, The reason for not considering 
second-order or higher orders of the sensitivities is mainly due to the linearity assumption of the 
Bayesian inverse modeling (same as Kalman filter). Moreover, incorporating high order 
gradients in least-squares constrain, or extended Kalman filter requires iterative updating which 
poses a significant computational burden. 

Using Bayes’ theorem, we have:  

−2𝑙𝑙𝑙𝑙𝑃𝑃(𝑥𝑥|𝑦𝑦) = (𝑦𝑦 − 𝐾𝐾𝑥𝑥)𝑇𝑇𝑆𝑆𝑜𝑜−1(𝑦𝑦 − 𝐾𝐾𝑥𝑥) + 𝑐𝑐1 (5) 
Where c1 is a constant and So is the observations error covariance matrix. The a priori knowledge 
of unknowns can be expressed by: 

−2𝑙𝑙𝑙𝑙𝑃𝑃(𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥𝑎𝑎)𝑇𝑇𝑆𝑆𝜀𝜀−1(𝑥𝑥 − 𝑥𝑥𝑎𝑎) + 𝑐𝑐2  (6) 
Where xa is the a priori value of x, c2 is a constant and Sε is the associated error covariance matrix 
of the emissions. Uncertainties for each source category were set to 50% for area, mobile and 
point sources and to 300% for biogenic soil emissions. Uncertainty for OMI was based on the 
uncertainty provided in instrument retrieval products (Bucsela et al., 2013). After mathematical 
computations, the a posteriori state (𝑥𝑥�) vector can be given by: 

𝑥𝑥� = 𝑥𝑥𝑎𝑎 + �𝐾𝐾𝑇𝑇𝑆𝑆
ɛ
−1𝐾𝐾 + 𝑆𝑆𝑜𝑜−1�

−1
𝐾𝐾𝑇𝑇𝑆𝑆

ɛ
−1(𝑦𝑦 − 𝐾𝐾𝑥𝑥𝑎𝑎) (7) 

Where xa is the a priori state vector, Sε is the estimated error covariance matrix for xa, and So is 
the error covariance matrix for observation errors. 

We applied the above method to update NOx emissions using OMI NO2 retrievals with CMAQ 
as the forward model. An interesting point here is that all satellite “retrievals” use similar 
methods to obtain (retrieve) concentrations of trace gases in the atmosphere (state) from 
measured radiances (observed) using known spectral relationships. The forward model in this 
case would use measurements of trace gas concentrations (which are unavailable) to predict 
radiances. Since NOx emissions in NEI-2011 are divided into four source categories (area, soil, 
mobile and point sources), a total of 8 CMAQ sensitivity simulations are needed to update 
emissions. An additional CMAQ sensitivity simulation was performed to update total NOx 
emissions. 
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2.3. Model Simulation 

The WRF and CMAQ simulation period is selected to be September 1 -30, 2013, which is the 
NASA’s DISCOVER-AQ 2013 field campaign period. 

 

WRF  

Domain setup 

The WRF domains have sizes of 161×145 for 12-km domain, and 97×79 for 4-km domain. WRF 
domains are shown in Figure 2 as red and blue boxes. The geographic parameters for the 
domains are listed in Table 1. 

 

 
Figure 2. WRF (thick lines) and CMAQ (thin lines) used for the UH Air Quality Forecasting 
(AQF) System. There are two domains: the 12-km Texas domain and the 4-km Houston-
Galveston-Brazoria (HGB) domain. 

 

Table 1. Projection Parameters and Domain Origin 

First True Latitude (Alpha)   33°N 
Second True Latitude (Beta) 45°N 
Central Longitude (Gamma) -97°W 
Projection Origin (31.55113°N, -98.13650 °W) 
12km WRF domain Lower Left Corner [x, y] (m) [-1007980, -1739860] 
4km WRF domain Lower Left Corner [x, y] (m) [56020, -1251860] 
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Both WRF and CMAQ share the same vertical structure since no layer collapsing has been 
employed in the Meteorology Chemistry Interface Processor (MCIP). The vertical structure is 
listed in Table 2. 

 

Table 2. Vertical layer structures of WRF and CMAQ used for the modeling 

Layer Height Above 
Ground Level 
(AGL, m) 

Layer AGL(m) 

1 32.4 15 1517.8 
2 81.2 16 1751.4 
3 163.1 17 1990 
4 245.9 18 2233.9 
5 329.5 19 2534.7 
6 413.7 20 3164.8 
7 498.4 21 4193.1 
8 583.8 22 5415.3 
9 669.7 23 6964.2 
10 756.2 24 9083.3 
11 887.2 25 11444.6 
12 1019.6 26 14549.2 
13 1153.4 27 16540.7 
14 1288.8   
 

Input analysis data 

We have evaluated existing analysis datasets and decided to use NCEP’s (National Centers for 
Environmental Prediction) NARR (North American Regional Reanalysis) as input. The NARR 
data are based on an NCEP Eta 221 regional North American grid (Lambert Conformal) NCEP 
Eta 221 regional North American grid (Lambert Conformal)  at 29 pressure levels. Its horizontal 
resolution is 32-km and the frequency is 3-hourly. An alternative to NARR is the Eta-North 
American Mesoscale Model (NAM) analysis data. However, data frequency is reduced from 
every three hours to every six hours starting in 2013. Our validation tests showed it is not as 
good as NARR for WRF input, probably because of lower temporal resolution. 

Major WRF configurations 

Implemented WRF options are shown in Table 3 below. The first approximation and boundary 
conditions will be from NCEP NARR analyses. Grid nudging is turned on with the same NARR 
analysis data. 

 

 

 

http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html
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Table 3. WRF physics options 

WRF Version V3.6.1 
Microphysics Lin et al. Scheme 
Long-wave Radiation Rapid Radiative Transfer Model –Global Climate 

Applications (RRTMG) 
Short-wave Radiation New Goddard scheme 
Surface Layer Option Monin-Obukhov with Compressible Boundary layer (CB) 

viscous sublayer scheme 
Land-Surface Option Unified Noah Land Surface Model 
Urban Physics None 
Boundary Layer  Yonsei University (YSU) 
Cumulus Cloud Option Kain-Fritsch 
Four Dimensional 
Data Assimilation 
(FDDA) 

Grid and 1-hr observation-nudging  

 

Nudging (grid, surface and observation nudging) 

Obs-nudging is regarded as a low-cost and effective method for improving meteorological model 
performance but it requires additional observational data. In this study, we acquire input 
observation data and generating files in little_r format using codes developed in-house at the 
University of Houston (UH). Observational data come from the Meteorological Assimilation 
Data Ingest System (MADIS) and TCEQ CAMS network. MADIS is a NOAA program that 
collects, integrates, quality-controls, and distributes observations from NOAA and non-NOAA 
organizations. Four MADIS datasets used for obs-nudging are NOAA Profiler Network (NPN), 
Cooperative Agency Profilers (CAP), Aviation Routine Weather Report (METAR) and NOAA 
Radiosonde (RAOB). Most of the observation data are available at hourly frequency. Therefore, 
we implemented hourly observation nudging despite input analysis data being at 3-hourly 
frequency. Key settings for hourly obs-nudging are “intf4d” in “namelist.oa”, and 
“auxinput11_interval”, “sgfdda_interval_m” in “namelist.input”. 

 

CMAQ  

Emission processing 

Emission modeling was performed with the Sparse Matrix Operator Kernel Emissions (SMOKE) 
model. The 2008 National Emission Inventory (NEI) generated by the Environmental Protection 
Agency (EPA) (with the adjustment of mobile and point source changes using EPA national 
emission trends from 2008 to 2013, Czader et al., 2015; Pan et al., 2015; Li et al., 2015) was 
used to estimate hourly emission rates from anthropogenic sources for the continental U.S. (for 
12-km). The 2011 NEI was used for Southeast Texas domains (for 4-km). Emissions from 
natural sources were estimated with BEIS3 (Biogenic Emission Inventory System version 3). 
Mobile emissions were processed with MOVES. Various surface NOx emissions were prepared 
for inverse modeling. Again, in this project, we used the latest NEI-2011 emissions “as is” for 

http://www.epa.gov/ttn/chief/conference/ei11/modeling/vukovich.pdf
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4km domain, that is, without adjusting for possible emission changes. A brief summary of the 
emissions data used in this emissions modeling platform follows:  

• 2011 platform v6.1 represents all platform source categories (see Table 4) other than 
onroad mobile sources 

• For onroad mobile source emissions, the latest 2011 platform v6.2 based on the latest 
Motor Vehicle Emissions Simulator (MOVES) 2014 was used.  

Table 4 lists source categories that we used to represent the year 2011 air pollutant emissions for 
this emission modeling system and notes on data preparation. 

 

Table 4.  Platform source categories for the NEI 2011 platform 

Platform Source 
category Abbreviation Description 

Electricity 
Generating Units 
(EGU) non-
peaking units 

Ptegu 
2011 NEI point source EGUs determined to operate as non-
peaking units. Hourly 2011 CEMS are not used since the 
year of modeling is 2014.  

EGU peaking 
units 

 
ptegu_pk 

Same as ptegu source category but limited to EGUs that are 
determined to operate as peaking units. Hourly 2011 CEMS 
are not used since the year of modeling is 2014.  

Point source oil 
and gas pt_oilgas 2011NEIv1 point sources with oil and gas production 

emissions processes. Annual resolution.  

Remaining non- 
EGU point Ptnonipm 

All 2011NEIv1 point source records not matched to the 
ptegu, ptegu_pk, and pt_oilgas source categories, except for 
offshore point sources that are in the “othpt” source category. 
Includes all aircraft emissions and some rail yard emissions. 
Annual resolution.  

Agricultural  
Ag 

NH3 emissions from 2011NEIv1 nonpoint livestock and 
fertilizer application, county and annual resolution.  

Area fugitive 
dust Afdust 

 Particulate matter less than size 10 and 5 microns 
respectively (PM10 and PM2.5) from fugitive dust sources 
from the 2011NEIv1 nonpoint inventory including building 
construction, road construction, and agricultural dust, and 
road dust. County and annual resolution.  

Nonpoint oil and 
gas np_oilgas 2011NEIv1 nonpoint sources from oil and gas-related 

processes. County and annual resolution.  
Residential 
Wood 
Combustion 

Rwc 
This is a new source category in 2011NEIv1. NEI nonpoint 
sources with Residential Wood Combustion (RWC) 
processes. County and annual resolution.  
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Class 1 & 2 
CMV and 
locomotives 

c1c2rail 

Locomotives and primarily category 1 (C1) and category 2 
(C2) commercial marine vessel (CMV) emissions sources 
from the 2011NEIv1 nonpoint inventory. Midwestern states’ 
CMV emissions, including Class 3 sources, are from a 
separate year 2010 emissions inventory. County and annual 
resolution.  

Commercial 
marine c3marine 

Category 3 (C3) CMV emissions projected to 2011 from year 
2002 values. These emissions are not from the 2011NEIv1, 
but rather were developed for the rule called “Control of 
Emissions from New Marine Compression-Ignition Engines 
at or Above 30 Liters per Cylinder”, usually described as the 
Emissions Control Area- International Maritime 
Organization (ECA-IMO) study. Emissions Control Area- 
International Maritime Organization (ECA-IMO) study. 
(EPA-420-F-10-041, August 2010). U.S. states-only 
emissions (zero in Midwest); see othpt source category for 
all non-U.S. emissions. Treated as point sources to reflect 
shipping lanes, annual resolution.  

Remaining 
nonpoint 

nonpt 
 

2011NEIv1 nonpoint sources not otherwise removed from 
modeling or included in other platform source categories; 
county and annual resolution.  

Nonroad 
 

nonroad 
 

2011NEIv1 nonroad equipment emissions developed with 
the National Mobile Inventory Model (NMIM) using 
NONROAD2008 version NR08a. NMIM was used for all 
states except California and Texas, which submitted their 
own emissions to the 2011NEIv1. County and monthly 
resolution.  

Onroad 
RatePerDistance Rateperdistance 

EPA ran MOVES2014 for 2011 in emissions factor mode. 
The MOVES lookup tables include on-network 
(RatePerHour) to represent exhaust and most evaporative 
emissions during running, tirewear, and brake wear modes. 
These data include the reference county and reference fuel 
month assignments that EPA used for the MOVES 
simulation. 

Onroad 
RatePerHour Rateperhour 

EPA ran MOVES2014 for 2011 in emissions factor mode. 
The MOVES lookup tables include off-network 
(RatePerDistance) that represents emissions from extended 
idling and Auxiliary Power Unit (APU) operation. These 
data include the reference county and reference fuel month 
assignments that EPA used for the MOVES simulation. 

http://www.epa.gov/otaq/oceanvessels.htm
http://www.epa.gov/otaq/oceanvessels.htm
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As a QA/QC check, we provide area source category comparison of the two inventories below. 
Figure 3 shows area emissions from NEI2008 and NEI-2011, as well as differences in 
percentage. The reduction is evident – the NEI2008 large area emission in the DFW area (upper 
left corner) can hardly be seen in the NEI-2011. Intensity also decreased in the Houston area. 

 

Onroad 
RatePerVehicle Ratepervehicle 

EPA ran MOVES2014 for 2011 in emissions factor mode. 
The MOVES lookup tables include off-network starts/stops 
(RatePerVehicle) that represents emissions from start 
exhaust and most evaporative emissions that occurs off-
network. These data include the reference county and 
reference fuel month assignments that EPA used for the 
MOVES simulation. 

Onroad 
RatePerProfile Rateperprofile 

EPA ran MOVES2014 for 2011 in emissions factor mode. 
The MOVES lookup tables include off-network 
(RatePerProfile) that represents emissions from evaporative 
fuel vapor venting. These data include the reference county 
and reference fuel month assignments that EPA used for the 
MOVES simulation. 

Non-US Point Othpt 

Point sources from Canada’s 2006 inventory and Mexico’s 
Phase III 2012 inventory, annual resolution. Mexico’s 
inventory is year 2012 and grown from year 1999 (ERG, 
2009; Wolf, 2009). Also includes all non-U.S. C3 CMV and 
U.S. offshore oil production, which are unchanged from the 
2008 NEI point source annual emissions.  

Non-US 
nonpoint and 
nonroad 

Other 
Annual year 2006 Canada (province resolution) and year 
2012 (grown from 1999) Mexico Phase III (municipio 
resolution) nonpoint and nonroad mobile inventories.  

Non-US onroad Othon 
Year 2006 Canada (province resolution) and year 2012 
(grown from 1999) Mexico Phase III (municipio resolution) 
onroad mobile inventories, annual resolution.  

Biogenic Biog No updates made (Stay constant) 
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Figure 3. Area emissions. left: NEI2008, center: NEI-2011, and right: difference in percent. 

 

Generating meteorological input using MCIP 

Meteorological input for CMAQ was processed using UH-modified MCIP over WRF output. 
UH-modified MCIP corrected a few bugs and had minor enhancements over default MCIP. 

 

Major CMAQ configurations 

Major CMAQ configurations are shown in Table 5. All of these options have been tested by the 
UH modeling group. 

 

 Table 5. Major CMAQ options 

CMAQ version V5.0.1 
Chemical Mechanism cb05tucl_ae5_aq: CB05 gas-phase mechanism with active 

chlorine chemistry, updated toluene mechanism, fifth-
generation CMAQ aerosol mechanism with sea salt, 
aqueous/cloud chemistry 

Lightning NOx emission Included by using inline code 
Horizontal advection Yamartino (YAMO (hyamo) 
Vertical advection WRF omega formula (vwrf) 
Horizontal 
mixing/diffusion 

Multiscale (multiscale) 

Vertical 
mixing/diffusion 

Asymmetric Convective Model version 2 (acm2) 

Chemistry solver Euler Backward Iterative (EBI) optimized for the Carbon 
Bond-05 mechanism (ebi_cb05tucl) 

Aerosol Aerosol Module version 5 (AERO) 5 for sea salt and 
thermodynamics (aero5) 

Cloud Option ACM cloud processor for AERO5 (cloud_acm_ae5) 
Initial and Boundary 
Conditions (IC/BC) 
source 

Default static profiles 
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3. Evaluation of Meteorology Simulations 

 

3.1 General Meteorological Conditions  

The weather during the September 2013 simulation period was relatively dry with mostly 
southerly, easterly or southeasterly winds. From 09/05 to 09/19, there was a lack of influence of 
strong synoptic weather systems. Shifting wind patterns were observed during the period: light 
northeasterly in the early morning gradually turned clockwise to southeasterly in the afternoon 
and evening hours. In this period, winds shifted from south east to near east and there were more 
clouds after 09/10. The only cold front arrived early 09/21. Figure 4 shows daily regional 
average temperatures and periods marked with temperature drops. The “1Hr-OA” case clearly 
tracked observations better than the “No-OA” case. Although not very significant to 
photochemistry, temperature drop is usually a good proxy for the critical factors affecting ozone 
production or transport such as cloudiness, wind and precipitation. 

 

 
Figure 4. Regional daily temperature averaged over all available (typically around 1,200) hourly 
CAMS observations 

Light rain events occurred on 09/02, 09/10, 09/16, 09/19 to 09/21 and 09/28 to 09/30. The 09/20 
and 09/21 events consisted of widespread light to medium showers. Besides above-mentioned 
dates, there were a few other days with sporadic drizzles.  

A majority of the days between 09/01 and 09/20 were mostly sunny to mostly cloudy. The 
periods from 09/08 to 09/10 and 09/18 to 09/20 had more clouds than other days. The period 
from 09/21 to 09/30 was influenced by the passage of a cold front. The days between 09/22 and 
09/24 were sunny and cool. Then the surface wind direction reversed in mid-09/25 and brought 
clouds from 09/26 to 09/30.  

 

3.2 Evaluation metrics  

To evaluate performance of WRF simulations we used statistics commonly used by the modeling 
community, listed below. Observational CAMS data were used to validate model results.  
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Correlation (r) between model values and observed values 

𝑟𝑟 =
∑ [(𝑥𝑥𝑡𝑡 − �̅�𝑥)(𝑦𝑦𝑡𝑡 − 𝑦𝑦�)]𝑛𝑛
𝑡𝑡=1

�∑ (𝑥𝑥𝑡𝑡 − �̅�𝑥)2𝑛𝑛
𝑡𝑡=1 ∗ ∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�)2𝑛𝑛

𝑡𝑡=1
 (8) 

n = number of data points, x = observed values, y = model values, values with an over bar 
indicate the mean. 

Index of Agreement (IOA) between model values and observed values 

𝐼𝐼𝑁𝑁𝐼𝐼 = 1 −
∑ 𝑒𝑒𝑡𝑡2𝑛𝑛
𝑡𝑡=1

∑ (|𝑦𝑦𝑡𝑡 − �̅�𝑥| + |𝑥𝑥𝑡𝑡 − �̅�𝑥|)2𝑛𝑛
𝑡𝑡=1

 (9) 

n = number of data points, et = yt-xt, x = observed values, y = model values, values with an over 
bar indicate the mean. 

Root Mean Square Error (RMSE) 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �
1
𝑙𝑙
�𝑒𝑒𝑡𝑡2
𝑛𝑛

𝑡𝑡=1

 (10) 

n = number of data points, et = yt-xt, x = observed values, y = model values 

Mean Absolute Error (MAE) 

𝑅𝑅𝐼𝐼𝑅𝑅 =
1
𝑙𝑙
� |𝑒𝑒𝑡𝑡|
𝑛𝑛

𝑡𝑡=1

 (11) 

n = number of data points, et = yt-xt, x = observed values, y = model values 

Mean Bias (MB) 

𝑅𝑅𝑀𝑀 =
1
𝑙𝑙
�𝑒𝑒𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 (12) 

n = number of data points, et = yt-xt, x = observed values, y = model values 

 

3.3  Meteorological simulation results  

We performed three sets of WRF simulations with different objective analysis settings: 1) no 
observation nudging is performed (No-OA); 2) observation nudging input is updated every 3 
hours; and 3) observation nudging input is updated every 1 hour. The different OA frequencies 
were set in the namelist file of WRF while input files of different frequencies were generated by 
the OBSGRID program. 
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Although not very significant to photochemistry, temperature change is usually a good proxy for 
the critical factors affecting ozone production or transport such as cloudiness, wind, and 
precipitation. Table 6 lists statistics of hourly surface temperature and shows that the OA cases 
are clearly better than the no-OA case, with the correlation coefficient increasing by about 10% 
and IOA improving by 7%-8%. Biases for all cases are low, indicating excellent energy budget 
in the model. On the other hand, the two OA cases have similar statistics with “1Hr-OA” slightly 
superior. 

 

Table 6. Statistics of hourly surface temperature 

Case N Corr IOA RMSE MAE MB O_M M_M O_SD M_SD 
No-
OA 

41058 0.83 0.89 2.0 1.5 0.9 27.4 28.3 3.1 2.8 
3Hr-
OA 

41058 0.93 0.96 1.2 0.9 0 27.4 27.4 3.1 3.1 
1Hr-
OA 

41058 0.94 0.97 1 0.8 0 27.4 27.4 3.1 3.1 
N – data points; Corr – Correlation; IOA – Index of Agreement; RMSE – Root Mean Square 
Error; MAE – Mean Absolute Error; MB – Mean Bias; O – Observation; M - Model; O_M – 
Observed Mean; M_M – Model Mean; SD – Standard Deviation; Units for 
RMSE/MAE/MB/O_M/M_M/O_SD/M_SD: degree C 

 

Compared to temperature, hourly winds at local scale are difficult to predict by meteorological 
models such as WRF. Performance of the model is also greatly influenced by the quality of input 
analysis data. Running the model at a finer resolution can provide more local meteorological 
details than at coarser resolution. A fine resolution run usually does not alter average winds 
inherited from the coarse resolution run unless objective analysis is performed. Therefore, when 
large-scale winds from the input analysis differ from observations, there is little chance that the 
model can predict winds correctly. One remedy is to add objective analysis (observation 
nudging) during the WRF run. 

Statistics for U-wind are displayed in Table 7 while those for V-wind are shown in Table 8. An 
alternative approach for calculating wind statistics is to compute statistics for wind speed and 
wind direction. The drawback for this approach is that wind direction is measured in degrees. For 
example, a direction of 5 degrees is actually close to the direction of 355 degrees but statistically, 
5 and 355 are far apart.  

The statistics indicate that model winds generally have lower correlation with observations than 
model temperature. Hence, evaluating wind statistics requires extra caution as correlation can be 
misleading for days with light winds. Specifically, low correlation on a day with light winds does 
not necessarily mean poor model performance since wind direction on a light wind day can vary 
from hour to hour somewhat randomly at a given site and it is usually hard for the model to 
capture these local-scale changes. 

Statistics for U and V wind components are listed in Table 7 and 8 respectively. The statistics are 
based on CAMS data. Results are quite consistent across variables. Overall, winds are reasonably 
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well simulated after OA was performed. OA cases have significantly better IOA than the No-OA 
case, while differences between the 1Hr-OA and 3Hr-OA are quite small. A further examination 
of the numbers shows OA cases have smaller wind biases (lower winds) than No-OA case. The 
IOA improved by 6% for U-wind and 11% for V-wind. 

 

Table 7. Statistics of hourly surface U wind 

Case N Corr IOA RMSE MAE MB O_
M 

M_M O_SD M_SD 

No-
OA 

43246 0.76 0.84 1.4 1.1 -0.6 -1.3 -1.9 1.6 1.9 

3Hr-
OA 

43246 0.79 0.88 1.1 0.8 -0.3 -1.3 -1.6 1.6 1.6 

1Hr-
OA 

43246 0.81 0.89 1.0 0.8 -0.3 -1.3 -1.6 1.6 1.6 

 

Table 8. Statistics of hourly surface V wind 

Case N Corr IOA RMSE MA
E 

MB O_M M_M O_SD M_SD 

No-
OA 

43246 0.76 0.8 2.1 1.7 1.2 0.4 1.7 2 2.6 
3Hr-
OA 

43246 0.77 0.88 1.3 1 -0.1 0.4 0.4 2 2 
1Hr-
OA 

43246 0.8 0.89 1.2 0.9 -0.1 0.4 0.4 2 2 
N – data points; Corr – Correlation; IOA – Index of Agreement; RMSE – Root Mean Square 
Error; MAE – Mean Absolute Error; MB – Mean Bias; O – Observation; M - Model; O_M – 
Observed Mean; M_M – Model Mean; SD – Standard Deviation; Units for 
RMSE/MAE/MB/O_M/M_M/O_SD/M_SD: m/s 

 

The ability of OA to correct the wind field can be seen from Figure 5: (a) No-OA (b) 1Hr-OA. 
At 09:00 CST of 09/25, observed winds (orange) at most Houston area sites are from the 
northwest. The No-OA case shows northerly winds while the 1Hr-OA case has northwesterly 
winds. Therefore, the 1Hr-OA case matched much better with observations. 
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Figure 5(a). Winds of No-OA case at 09/25_09 CST, orange arrows show observations. The 
model has strictly northerly winds in Houston. 

 
Figure 5(b). Winds of 1Hr-OA case at 09/25_09 CST, orange arrows show observations. The 
model has mostly northwesterly winds in Houston. 

 

 

  



28 
 

4. Inverse Modeling Results: NOx Emission and Model and 

Satellite NO2 Comparison 

As outlined in Section 2.2, a forward chemical transport model links the emissions to 
tropospheric NO2 concentrations. For this study we used the USEPA’s Community Multiscale 
Air Quality (CMAQ) model (Byun and Schere, 2006) to simulate air quality on a 4km gridded 
domain during September 2013. As mentioned before, lateral boundary conditions were derived 
from NARR. The chemical boundary conditions for the 4-km CMAQ run were obtained from the 
University of Houston air quality forecasting system  using a parent domain which had a grid 
resolution of 12 km. Our 4 km simulation model domain covering southeast Texas consisted of 
84 and 66 grid cells in the x and y directions respectively with 27 vertical layers. As indicated 
previously, the emissions inventory for simulation was NEI-2011 processed with the Sparse 
Matrix Operator Kernel Emissions (SMOKE) and the MOVES (Motor Vehicle Emission 
Simulator). 

In order to set up the inverse modeling framework, some variables including uncertainties of 
emissions and observations should be defined. Since each pixel in an OMI satellite image has a 
different uncertainty depending on meteorological conditions (e.g., air mass factor), a matrix of 
uncertainty is needed. Here we used a pre-defined uncertainty of tropospheric NO2 provided in 
OMI granules. By following the error propagation rule, the uncertainty of each pixel based on all 
available granules was calculated. Since inverse modeling is sensitive to the uncertainty of 
observations, assuming fixed uncertainty might lead to a false change in emission inventory in 
areas where OMI observations have large uncertainty. Estimating error of emissions is not a 
straightforward task. We assumed a 50% uncertainty level for anthropogenic sources (Shim et 
al., 2005) and 300% for biogenic soil sources (Hudson et al., 2010).  

 

4.1 Emissions  

Based on the method explained in Chapter 2, we updated NOx emissions in NEI-2011 and called 
the updated version NEI-2011n. The old and updated NOx emissions by source categories are 
shown in Figures 6 through 10. The upper column plots are for old (priori, or NEI-2011) NOx 
emissions while the lower column shows the updated (posteriori, or NEI-2011n) NOx emissions.  

Area Source Category 

NOx emission in area source category is shown in Figure 6. We can see that in the updated 
version, NOx emissions decreased significantly in both Houston and the Lake Charles region. 
There are only small changes in the rural area and Beaumont region. The largest decrease 
appears to be the two red grid cells in the middle of Harris County.  

http://spock.geosc.uh.edu/
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Figure 6(a). Area source NOx emissions estimates in southeast Texas, NEI-2011 (Old) 

 
Figure 6(b). Area source category NOx emissions estimates in southeast Texas, NEI-2011n 
(Updated) 
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Figure 6(c). The difference between NEI-2011n and NEI-2011 for area source category. 

 

Biogenic Soil Source category 

Figure 7 depicts NOx emissions from the biogenic soil source category. The original inventory 
has higher NOx emissions in the western and coastal regions of the modeling domain and lower 
emissions in urban Houston, the Piney Woods of eastern Texas and areas adjacent Louisiana. 
The updated emission shows enhanced biogenic soil NOx emissions in western and coastal 
regions and a rather small change in the Piney Woods region. This can be well explained by the 
tendency of earlier versions of the BEIS (Biogenic Emission Inventory System) model to 
underestimate biogenic emissions, since we used BEIS3 for biogenic soil processing.  
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Figure 7(a). Biogenic soil NOx emissions estimates in southeast Texas, NEI-2011 (Old) 

 
Figure 7(b). Biogenic soil NOx emissions estimates in southeast Texas, NEI-2011n (Updated) 
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Figure 7(c). The difference between NEI-2011n and NEI-2011 for area source category. 

 

Mobile Source Category 

Figure 8 shows estimates of NOx emissions from the mobile source category which makes up 
approximately 50-75% of total NOx emissions in Houston. As stated earlier, because of 
improvements in fuel technology and emissions control strategies and technology, a decreasing 
trend in mobile NOx emissions is expected. Therefore, a priori mobile NOx emissions in 2011 
should be considerably reduced to match those of 2013. The a posteriori mobile NOx emissions 
have decreased substantially to a factor of 2 in center of Houston. It emphasized that an 
adjustment should be performed for future studies when using NEI-2011 for model simulation. 
This overestimation masks the real chemical condition of the cities for conducting any sensitivity 
analysis, and also makes it hard to quantify the relative importance of NOx emissions from other 
source categories such as power plants.   
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Figure 8(a). Mobile source category NOx emissions estimates in southeast Texas, NEI-2011 

(Old) 

 
Figure 8(b). Mobile source category NOx emissions estimates in southeast Texas, NEI-2011n 
(Updated) 
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Figure 8(c). The difference between NEI-2011n and NEI-2011 for mobile source category. 

 

Point Source Category 

Figure 9 represents the point source NOx emissions. Point sources are more concentrated near the 
Houston Ship Channel. Posterior emissions revealed that besides mobile NOx emissions, point 
source was also over-predicted in the 2013 simulation. This is likely due to strict regulations 
which reduced point source emissions. 

 
Figure 9(a). Point source category NOx emissions estimates in southeast Texas, NEI-2011 (Old) 
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Figure 9(b). Point source category NOx emissions estimates in southeast Texas, NEI-2011n 
(Updated) 

  
Figure 9(c). The difference between NEI-2011n and NEI-2011 for point source category. 

 

In order to validate the accuracy of the a posteriori point sources, we used TCEQ-2013 point 
sources which more likely reflect the real emission rates in Sep-2013. Figure 10 (a) shows NOx 
point source emissions in units of ton per year which has been made based on the a priori of 
NEI-2011. Figure 10 (b) evidently shows that the a posteriori considerably reduced after 
performing inverse modeling. Interestingly, Figure 10 (c), which is based on TCEQ 2013 NOx 
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emission, matches better with Figure 10 (b) results, providing convincing evidence that the 
method used is efficient to update emission inventory based on OMI satellite data. 

 
Figure 10(a): Point source category NOx emissions estimates in southeast Texas, NEI-2011. The 
unit is tons per year. 

 
Figure 10(b): Point source category NOx emissions estimates in southeast Texas, NEI-2011n. 
The unit is tons per year. 
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Figure 10(c): Point source category NOx emissions estimates in southeast Texas, from the Texas 
Commission on Environmental Quality (TCEQ) 2013 Point Source Emissions Inventory (PSEI). 
The unit is tons per year. 
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Total NOx Emissions 

Total NOx emissions before and after inverse modeling is shown in Figure 11. The NOx 
emissions decrease in urban regions and background biogenic and area emission increase in rural 
areas. This could be attributed to large uncertainty of biogenic emissions estimation, or changes 
in land use/land cover, all of which should be studied in future work. 

 
Figure 11(a). Total (all source categories) NOx emissions estimates in southeast Texas, NEI-
2011 (Old) 

 
Figure 11(b). Total (all source categories) NOx emissions estimates in southeast Texas, NEI-
2011n (Updated) 
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Figure 11(c). The difference between NEI-2011n and NEI-2011 for all source categories. 

 

4.2 Simulated NO2  

To evaluate the updated NOx emissions, we performed CMAQ simulations to compare model 
NO2 against OMI satellite, aircraft and surface CAMS observations. 

 

Comparison to OMI Tropospheric NO2 

As indicated previously, we used daily granules of NASA OMI NO2 to compare model 
performance and to update emissions. Due to uncertainty of the product in cloudy conditions and 
the retrieval method, aforementioned tests have been carried out to provide reliable information 
(i.e., high signal/noise ratio). Since OMI acquires its imagery in different overpasses and its 
spatial resolution becomes coarser from nadir to the extremities of scan lines, we re-grid the 
granules based on the method of Kulman et al. (2014) to provide a map of NO2 in the same grid 
as our model domain (4-km resolution). While a Level 3 product is provided by NASA, its 
spatial resolution is too coarse (0.25o×0.25o) for inverse modeling at a regional scale. 

CMAQ provides NO2 concentrations in mixing ratio units for each layer. One must integrate all 
concentrations from surface to the tropopause height in order to retrieve simulated tropospheric 
NO2. For this purpose we made use of the following equation: 

𝑇𝑇𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑐𝑐 𝑁𝑁𝑁𝑁2 = � 2.687 × 1016 × (−7.88 × 105) × (𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑘𝑘−1) × 𝑁𝑁𝑁𝑁2𝑘𝑘
𝑛𝑛

𝑘𝑘=1

 (13) 

Where P is pressure in hPa (hectoPascals) and NO2
k is mixing ratio (ppt) in the kth layer. 
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Resultant tropospheric NO2 concentrations from CMAQ are depicted in Figure 12(a). The plot 
shows the average of all CMAQ NO2 values by using original NEI-2011 in the region in 
September 2013 at ~1:30 p.m. CST (one per day at roughly the same time that OMI captures its 
imagery). It clearly shows high NO2 levels in the center of the city which is caused 
predominantly by mobile and point sources.  

    
Figure 12(a). Simulated tropospheric NO2 from CMAQ in September of 2013 at 1:30 p.m. CST. 

Average OMI tropospheric NO2 in September 2013 is shown in Figure 12(b). Note that the 
influences of initial profile used for NO2 retrieval have been removed in this result. The result in 
Figure 12(b) demonstrates higher and lower NO2 values in non-urban and urban regions 
respectively compared to CMAQ output. This might be expected based on extensive evaluation 
of photochemistry in this region (e.g., Choi 2014 and references therein). However this large 
difference between observations and simulation is not only attributed to emission uncertainty but 
also to exclusion of influences of the a priori profile used in OMI NO2 retrieval. After 
minimizing the mentioned influences, the model output and OMI observation become closer. We 
removed this a priori profile based on the method of Duncan et al. (2014) to obtain adjusted OMI 
tropospheric NO2 depicted in Figure 12(c). 
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Figure 12(b). Average OMI tropospheric NO2 in September of 2013. Noisy pixels have been 
screened out but the effect of the a priori profile remains. 

 
Figure 12(c). Average adjusted OMI tropospheric NO2 in September of 2013. Noisy pixels have 
been screened out and the effect of the a priori guess is mitigated. 

It is evident that adjusted OMI output differs from the unadjusted one. After adjusting OMI 
tropospheric NO2, background NO2 in rural regions decreased. This result is especially 
noteworthy when contrasted with CMAQ model output and our assumption of small 
contributions of biogenic soil emissions in these regions. Figure 12(c) presents a very detailed 
OMI map for Houston. We believe this figure communicates a crucial message to the air quality 
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community: removing the influence of the a priori profile undeniably has considerable impacts 
(both in magnitude and distribution) on OMI tropospheric NO2.   

In order to validate simulated tropospheric NO2 and OMI, we calculated a 2-D correlation 
analysis, bias, RMSE and the ratio of model to OMI. We found good agreement in correlation 
(~0.7) between the observation and model results. On the other hand, bias and RMSE were found 
to be ~7×1014 molecules cm-2 and 9×1014 molecules cm-2 respectively, indicating over-prediction 
by the model. The map of the ratio of the model to OMI is depicted in Figure 12(d). It reveals in 
Houston, CMAQ over-prediction of NO2 levels might be caused by overestimation of emissions 
by NEI-2011. Under-prediction in non-urban regions also can be seen. 

 
Figure 12(d). Ratio of simulated tropospheric NO2 to OMI output for September 2013 (both data 
have been co-registered in time and space). 

 

Comparison to CAMS 

Average Morning Surface NO2 

Typically NO2 concentrations reach a maximum in morning time hence in Figure 13 we plot the 
spatial pattern for simulated NO2  averaged over 06-12 local time. High NO2 hotspots are seen in 
the urban regions: Houston, Beaumont, and Lake Charles. Comparison of CAMS sites and model 
simulation show a correlation coefficient of 0.9, mean absolute bias of 3.3 ppbv and RMSE of 
4.1 ppbv. The comparison is made with hourly data averaged over all observation sites. Positive 
NO2 biases are likely the result of high NO2 emissions in the original inventory. Using updated 
emissions, the correlation coefficient did not improve but mean absolute bias (2.7 ppbv) and 
RMSE (3.1 ppbv) decreased. The largest bias reduction is seen at the center of Houston. Bias in 
rural area was small in NEI-2011 and remained so in NEI-2011n. 



43 
 

 
Figure 13(a). Simulated morning surface NO2 and CAMS observations (small circles), NEI-
2011. 

 
Figure 13(b). Simulated morning surface NO2 and CAMS observations (small circles), NEI-
2011n. 
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Hourly Surface NO2 statistics 

Hourly surface NO2 statistics are shown in Table 9.  

Table 9. Statistics of hourly surface NO2 

Case N Corr IOA RMSE MAE MB O_M M_M O_SD M_SD 
NEI-
2011 

19804 0.65 0.74 6.9 4.5 2.6 5.6 8.2 5.7 8.4 

NEI-
2011n 

19804 0.61 0.75 6.0 4.0 1.6 5.6 7.3 5.7 7.1 

N – data points; Corr – Correlation; IOA – Index of Agreement; RMSE – Root Mean Square 
Error; MAE – Mean Absolute Error; MB – Mean Bias; O – Observation; M - Model; O_M – 
Observed Mean; M_M – Model Mean; SD – Standard Deviation; Units for 
RMSE/MAE/MB/O_M/M_M/O_SD/M_SD: ppb 

It should be noted that the correlation in Figure 13 was computed using average morning NO2 for 
September while Table 9 was based on individual hourly observations. Therefore the correlation 
in Table 9 might be lower. Overall, updated emissions improved surface NO2 statistics with IOA 
increasing by 0.01. A decrease in correlation is offset by better matches in model mean 
(dropping from 8.2 to 7.3 compared, observed 5.6) and standard deviation (dropping from 8.4 to 
7.1, observed 5.7). This is expected as NO2 emissions decreased in the updated inventory. 

 

Regional Average Surface NO2 Time Series in Metro Houston 

In order to study temporal variations in measured NO2 levels and our model simulation, we 
compare the time series of observed and simulated NO2 levels in the Houston metro area. NO2 
data were hourly regional averages using observations from more than 20 CAMS sites. Figure 14 
shows consistent over-prediction of daily NO2 peaks using original NEI-2011 on most days. 
With adjusted NEI-2011n emissions, the new simulation shows that mean bias and RMSE of 
regional average surface NO2 decreased by 24% and 15% respectively. 

 

 
Figure 14(a). Time series of simulated and observed surface NO2 levels -- NEI-2011 
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Figure 14(b). Time series of simulated and observed surface NO2 levels -- NEI-2011n 

 

Comparison to Aircraft 

NO2 Vertical Biases for NEI 2011 and NEI 2011n 

Figure 15 plots the NO2 vertical biases against aircraft measurements for the original and 
updated emissions. All 10 days with sufficient observations were plotted. The results are mixed – 
depending on the individual day and the height level.  

When the original simulation (NEI-2011) showed a positive bias, the new simulation reduced 
biases. On the other hand, when the old case had a negative bias, the new case made the bias 
worse. This is in agreement with the fact that overall NO2 emissions in NEI-2011n are lower 
than NEI-2011. Above ~1.5 km, NO2 concentrations fall below 1 ppb for both model and 
observation. There is usually minimal difference between the two cases. 
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Figure 15. NO2 vertical biases for NEI-2011 (red) and NEI-2011n (blue). Measurements are 
aggregated over model grid cells 

 

HCHO Time Series 

Figure 16 shows HCHO time series as well as aircraft measurements for NEI-2011 and the 
updated NEI-2011n emission inventory.  

The two figures (Figure 16a and 16b) have minor differences. Overall, the model has less 
oscillations and slightly lower values. There is a high observed peak on 09/25, corresponding to 
observed peaks in O3 and NO2. Similar to the situation in O3 and NO, the model did not capture 
the observed high values. We are still investigating the cause for model misses on 09/25 and 
current results suggest that a problem in model winds played a role while the emission errors 
(either from inventory or unreported upset releases, or both) could also be at fault. 
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Figure 16(a). Model and observed (aircraft) HCHO using NEI-2011 

 
Figure 16(b). Model and observed (aircraft) HCHO using NEI-2011n 
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Impact of Updated Emission Inventory on HCHO/NO2 Ratio 

Because of non-linearity of ozone production relative to its precursors, individual species or 
species ratios can provide evidence on the ozone-NOx-VOC relationship (Sillman, 1995). 
Among these “indicator species”, the HCHO/NO2 ratio has been considered a robust proxy for 
assessing the impact of VOC and NOx on ozone production (Martin et al., 2003; Choi et al., 
2012). Due to large uncertainties of the emission inventories (both biogenic and anthropogenic), 
the magnitude of the ratio suggests that the chemical conditions of the region are incorrectly 
depicted. This inaccuracy not only causes ozone production to deviate considerably from its 
actual rate, but also hinders conducting a reliable sensitivity analysis of ozone to its precursors 
(e.g., Choi and Souri, 2015). Hence one of the advantages of inverse modeling is to capture more 
realistic chemical conditions for a given region. Figure 17 demonstrates the ratio using original 
NEI-2011, updated NEI-2011n and the difference (i.e., NEI-2011n in respect to NEI-2011). Due 
to the fact that both anthropogenic VOC emissions (a source of HCHO) and biogenic emissions 
were constant, only NOx emissions changes have impacted the ratio before and after adjustment. 
Figure 17 shows that in urban regions, more correctly specified chemical conditions produce a 
more NOx-sensitive regime using the adjusted emission inventory. On the other hand, in remote 
regions (i.e., rural regions), an opposite trend is seen. 

 

Figure 17. Simulated tropospheric HCHO/NO2 with NEI-2011 (left panel), NEI-2011n (middle 
panel) and the difference (right panel). Positive percentage means becoming more NOx-
sensitive.  
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5. Inverse Modeling: Impact on Ozone 

Since the two principal pollutants triggering pollution events in Texas are NOx and ozone, the 
ultimate goal of this study is to investigate the impact of updated NOx emissions on ozone. In 
Texas, the HGB region is assigned a ‘non-attainment’ status by EPA due to ozone exceeding the 
National Ambient Air Quality Standards. Here we present ozone results before and after inverse 
modeling. 

  

5.1 Surface Ozone  

Hourly Ozone Statistics 

Hourly surface ozone statistics are displayed in Table 10. It is based on all available hourly 
ozone observations. Missing data points are not included. The updated emissions slightly 
improved surface ozone statistics, with correlation increased by 0.02 and IOA by 0.01. Model 
mean ozone and bias showed minimal change. 

Table 10. Statistics of hourly surface ozone 

Case N Corr IOA RMSE MAE MB O_M M_M O_SD M_SD 
NEI-2011 33308 0.74 0.79 14.6 12.0 9.3 24.4 33.7 16.5 14.2 

NEI-
2011n 

33308 0.76 0.80 14.4 11.7 9.2 24.4 33.7 16.5 15.2 

N – data points; Corr – Correlation; IOA – Index of Agreement; RMSE – Root Mean Square 
Error; MAE – Mean Absolute Error; MB – Mean Bias; O – Observation; M - Model; O_M – 
Observed Mean; M_M – Model Mean; SD – Standard Deviation; Units for 
RMSE/MAE/MB/O_M/M_M/O_SD/M_SD: ppb 

 

Regional Ozone Average Time Series 

Figure 18 shows the time series of daily regional average ozone, which is calculated by 
averaging all the available hourly CAMS observations and the corresponding model values. On 
most days, the observed average ozone fell below 30 ppb. Since the winds after dawn 
consistently push precursors from the industrial area to the southwest of the city, the wind pattern 
does not favor local ozone production. Daytime winds also contained a persistent easterly 
component which moved the pollutants away from the metro Houston area. In the first 10-day 
period, lower background ozone coming from the Gulf of Mexico contributed to the low-ozone 
days. With overcast skies on the 19th and 20th, ozone values dipped below 20 ppb. The two 
highest ozone days, characterized by post-frontal ozone events, were the 25th and 26th of 
September. 
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Figure 18. The daily regional averaged ozone over all the sites in the 4 km domain for 
September 1-30. 

Figure 18 shows that model ozone generally followed observations reasonably well, 
although some overestimation by the model is visible. After examining the ozone time series of 
individual sites (Fig 19 to 25), we found that the coastal sites facing the Gulf usually have 
significant higher biases than the inland sites. Therefore, the overall positive bias, we believe, is 
largely the result of the high static CMAQ lateral boundary conditions (e.g., Li et al., 2014). 
Updated NOx emission minimally enhanced ozone which may be attributed to a slight decrease 
in NO titration. 

 

Hourly Ozone Time Series at Selected Sites 

Figures 19-25 show hourly time series at a couple of selected sites. The ozone concentrations in 
the NEI-2011 typically have slightly higher peaks and lower lows. The model did well in 
capturing daily peaks for inland sites such as C78 (Conroe) and C26 (Northwest Harris County). 
On the other hand, the model tends to have trouble simulating observed nightly lows. 

 
Figure 19. C1 – Houston East 
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Figure 20. C1034 – Galveston 

 
Figure 21. C26 – Northwest Harris County 

 
Figure 22. C403 – Clinton Drive 
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Figure 23. C53 – Bayland Park 

 
Figure 24. C78 – Conroe 

 

 
Figure 25. C8 – Aldine 
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Ozone on 09/25 – the Only High Ozone Episode 

In the HGB region, high ozone events during the fall season usually occur after frontal passage 
(e.g., Rappenglück et al., 2008; Ngan and Byun, 2011; Ngan et al., 2012). Two major factors 
contribute to post-front ozone events: 1) following a cold spell, winds reverse direction and 
subsequent light winds and sunny skies prevail, creating ideal conditions for ozone production 
and accumulation 2) reversal in wind direction transports back the pollutants that were blown 
into Galveston Bay previously, i.e., recirculation (e.g. Banta et al., 2005). 

During September 2013, 09/25 and 09/26 had the highest ozone with hourly ozone reaching 151 
ppb on 09/25. However, the two days exhibit different patterns. The maximum ozone on 09/25 
was caused primarily by favorable weather conditions: sunny, overall light winds and shifting 
winds in the industrial area. The light morning land breeze carried pollutants from the Ship 
Channel area to Galveston Bay. As the day warmed up, a bay breeze starts to develop, carrying 
pollutants back over land. This localized circulation is described by Banta et al. (2005). Ngan et 
al. (2012) reported the same phenomenon in their Texas Air Quality Study-II 2006 study.  

Observed ozone (shown as circles) started at a low value low in the Houston metropolitan area at 
0600 CST (Figure 26). However, the model shows a large area of elevated ozone located in the 
Gulf of Mexico. Model ozone predictions from the updated NOx emission inventory differed 
very little from that in the original one. 

By 0900 CST (Figure 27), the observed ozone level increased to 30-70 ppb at most CAMS sites 
higher than normal. Predicted ozone in the NEI-2011n case started to show a difference 
(generally higher) from the NEI2011 case. 

A bay breeze started to develop at 1000 CST, as shown in Figure 28, and a wind convergence 
zone around La Porte was formed. Rapid ozone production was observed around the La Porte 
area from 1000 CST to 1300 CST. In fact, the largest 1-hour increase, 46 ppb to 110 ppb was 
observed from 1000 to 1100 CST at C556 (La Porte Sylvan Beach). However, the bay breeze 
and wind convergence are missing in the model leading to much lower model ozone production 
in the area. By 1200 CST (Figure 29), ozone increased to 70-150 ppb at most CAMS sites with 
C556 having the highest value. 

Overall, the predicted ozone concentrations in the two cases (NEI2011 and NEI2011n) are quite 
similar on 09/25, especially in metro Houston. We can see small increases in ozone 
concentrations in the rural area, which is consistent with changes in NOx emissions there. This 
indicates that NOx is likely to be saturated even after a decrease in NEI-2011n in the cities. 
Therefore ozone is not very sensitive to changes in NOx in this case. 
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Figure 26. Spatial predicted ozone concentrations at 20130925_06 CST – NEI-2011 (top) and 
NEI-2011n (bottom). Observed ozone at CAMS sites are shown in circles. 
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Figure 27. Spatial predicted ozone concentrations at 20130925_09 CST – NEI-2011 (top) and 
NEI-2011n (bottom) 
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Figure 28. Spatial winds at 20130925_10 CST – bay breeze shown in encircled oval 
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Figure 29. Spatial ozone at 20130925_12 CST – NEI-2011 (top) and NEI-2011n (bottom) 
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5.2 Ozone Aloft  

Figure 30 shows ozone vertical biases (vis-a-vis aircraft measurements) for the old (NEI2011) 
and updated (NEI2011n) emissions. Overall the differences are quite small even after the 
emission update. The only day with more visible changes is 09/26, when NEI-2011n case 
showed a smaller negative bias at 200-300 meters level. The ozone profiles display significant 
swings from day to day, reflecting the varying weather and changing ozone lateral boundary 
conditions. Actual ozone biases depend on the individual day.  

Above 1.5 km, the two cases are virtually the same. This is reasonable as the NO2 emissions are 
only adjusted near the surface. At higher altitude, the NO2 concentration is quite low and does 
not affect the ozone level. 

 

  

Figure 30. Ozone vertical biases for NEI-2011 (‘e11’) and NEI-2011n (‘e11n’). Measurements 
are aggregated over model grid cells. 
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6. Summary and Conclusions 

 

In this project, we successfully implemented inverse modeling to reduce known NOx biases in 
the NEI-2011 emission inventory using satellite remote sensing data as a constraint. We showed 
that a comprehensive pre-processing part of OMI tropospheric NO2 including geometric and 
radiometric corrections is essential to update the emission inventory reasonably. The total 
anthropogenic NOx emissions in the urban area were brought down while biogenic soil emissions 
in rural areas were increased in the updated emission inventory. The increase in biogenic 
emissions in rural areas may be a response to underestimation of NOx in the BEIS model. 
Therefore, the change in biogenic emissions is a compensation of existing biases in a model 
component rather than a reflection of physical reality.  

Accurate meteorology is needed for effective air quality modeling. We improved the WRF 
simulation using the Objective Analysis technique, especially the wind fields which are critical 
to pollutant transport. Comparing the 1Hr-OA case to the No-OA case, the IOA improved by 6% 
for U-wind and 11% for V-wind. For temperature, the correlation coefficient increased by about 
10% while the Index of Agreement rose by 8%. These statistics indicate that the ozone modelling 
performance improved moderately. It should be noted that there is a limit within current WRF 
nudging process to rectify problematic winds. The inability of OA to reproduce the bay breeze 
and subsequent wind convergence on 09/25 is an example – despite the fact that the day’s winds 
were better after OA was performed. 

Our CMAQ simulation using posterior emission showed that the model NO2 column matched 
better with satellite NO2 data. At the surface level, NO2 in the three urban areas (Houston, 
Beaumont and Lake Charles) decreased. As a result, overall NO2 biases were reduced although 
they still remain positive. In rural areas, there are few observation sites and NO2 level was seen 
to increase slightly. Such increase was also evident by examining the priori and posterior spatial 
NO2 distribution in our 4-km domain. By comparing model results to the 10-day aircraft data, we 
found that NO2 aloft barely changed. This may be explained by two facts: all the modifications 
to the emission inventory occur close to surface level and the NO2 concentration aloft diminishes 
quickly as altitude rises.  

One important contribution of the project was to explore the impact of updated NOx emissions 
on ozone concentrations in southeast Texas; since ozone is the primary air quality concern in the 
region. For ozone both near surface and aloft, we detected only small changes with the updated 
NOx emissions. Overall, a small enhancement of ozone is found for most urban sites. Results 
indicated that the model simulated urban regions as being more NOx-saturated than their actual 
chemical conditions due to overestimation and underestimation of NOx and VOC emissions 
respectively, which led to suppressing ozone production. Therefore, the reduction in NOx 
emissions did shift the inaccurate NOx-saturation condition to more NOx-sensitive regime 
conditions. This demonstrates that besides updating NOx emissions, VOC anthropogenic 
emissions also should be updated to reflect more realistic chemical conditions of the region. 
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7. Future Works 

Here are a couple of future directions which can originate from this project: 

1) Improvement of Jacobian matrix (K) to consider the impact of different emitters on a 
receptor precisely. This can be done by CMAQ-Adjoint which is likely to be available for 
public-use in near future. 

2) The TROPOMI satellite instrument is about to be launched in 2015 which has significant 
potential for improving our capability to monitor NOx emissions from space. This will 
provide global daily coverage of tropospheric NO2 columns with 7×7 km2 nadir 
resolution. This would be a rich data source to constrain NOx emissions in a regional 
scale. 

3) The method presented here can be extended for our 12 km Continental USA domain. 
This might shed more lights on the accuracy of NEI-2011 and how OMI can improve it. 
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Appendix A 

Observation Nudging 

Observation nudging is regarded as a low-cost and effective method in improving meteorological 
model performance, but it requires additional observational data. In this study, we acquired the 
input observation data and generating files in “little_r” format using similar procedures found in 
Ngan et al. (2012) and Czader et al. (2013). Observational data came from the MADIS and 
TCEQ CAMS. MADIS, a National Oceanic and Atmospheric Administration (NOAA) program, 
collects, integrates, quality-controls, and distributes observations from NOAA and other 
organizations. The four MADIS datasets used for observation nudging were NOAA Profiler 
Network (NPN), Cooperative Agency Profilers (CAP), Meteorological Terminal Aviation 
Routine (METAR) weather report and NOAA Radiosonde (RAOB). The METAR dataset was 
collected by mostly first-order METAR reporting surface monitoring stations. NPN, RAOB and 
CAP were the most commonly used upper air datasets. 

The “little_r” files from previous step were fed into the WRF OBSGRID module to update the 
input domain analysis (“met_em”) files and generate additional surface analyses (“sffdda”) and 
text nudging files (“OBS_DOMAIN”). Actual observation nudging was performed by the main 
WRF program by properly setting observation nudging namelist variable. The namelist for 
OBSGRID and relevant WRF section settings came largely from recommended values of WRF 
User’s Guide and a previous study by Ngan et al. (2012).  

Theoretically, observation nudging update at a higher frequency should enhance model 
performance. A typical frequency of input analysis data is 3-hourly while the frequency for 
observational data is hourly. The 3-hourly frequency of input analyses may be the reason for the 
default 3-hour time-interval in WRF’s OBSGRID settings for generating the observation 
nudging files. Since there were few studies on the temporal frequency in existing OA studies and 
we have not seen a reference of 1-hour interval, we assumed that they used the default 3-hour 
interval. However, the interval may be set to 1-hour or smaller when corresponding 
observational data were available. We studied the difference between 1-hour and “default” 3-
hour OA; the results indicated 1-hour OA slightly outperformed the 3-hour one. As a result, we 
adopted 1-hour temporal frequency for observation nudging.  

It should be noted that the default time interval for modified gridded analyses, i.e., the 
“metoa_em” and “sgfdda” files has to match input analysis data in OBSGRID. The namelist 
variable was called “interval”, with a default value of “10800” seconds. The time-interval for 
output nudging files was set by namelist variable “int4d”, with the same default value of “10800” 
seconds. To output the observation nudging files hourly, “int4d” should be set to “3600” 
seconds. This means that the OBSGRID output files, “metoa_em” and “OBS_DOMAIN”, did 
not have the same interval in our study. 

In WRF, there were a few namelist variables controlling the frequency of grid nudging and 
observation nudging. The namelist file “namelist.input” is attached at the end of this appendix. 
The first one was “interval_seconds”, which should match the interval of input grid nudging files 
(“met_em”). The second one was “sgfdda_interval_m”, matching the interval of surface grid 
nudging files (“sgfdda”). In our simulation, both intervals were equal to 3-hours. The third one 
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was “auxinput11_interval”, controlling the updating interval for observation nudging files 
(“OBS_DOMAIN”). The last one, “obs_ionf”, determined the nudging frequency relative to 
internal integration time-step. For example, if the integration time-step for the coarse domain is 
30 seconds, setting “obs_ionf” to 1 means performing OA every 30 seconds, while setting 
"obs_ionf" to 3 means performing OA every 90 seconds. In our simulation, “obs_ionf” is set to 
1. There are other namelist variables in “fdda” section controlling the grid nudging behavior. We 
usually adhered to the default settings. For example, the mass fields (T and Q) were nudged only 
above the PBL, while wind fields (U and V) were adjusted at all levels including the surface 
layer. 

One departure from the default OA setting in WRF was that the moisture OA was turned off with 
“obs_nudge_mois” set to 0. This was based on our past experiences since performing moisture 
OA sometimes trigger excessive artificial thunderstorms which disrupted model flow fields. 

For observation nudging, all the data used are in-situ measurements at various sites. No 
averaging is performed on our side although the hourly data from MADIS and CAMS may be 
pre-averaged. For comparison to surface data, we used “exact match” – by extracting the model 
grid cell value for which an observation site is located in. For aircraft data, there is a mismatch 
on spatial and temporal scales. Therefore, we averaged multiple observation data points within 
one grid cell and 1-hour timeframe. 

The obs-nudging impact on meteorology has been described in the final report. Next we show its 
impact on ozone.  

Impact on Ozone 

The sensitivity of observation nudging on ozone is performed for NEI2008 emission inventory. 
For NEI-2011 and NEI-2011n, we only run CMAQ for the 1Hr-OA case due to time constraint. 
Hence we show the comparison of surface ozone and aloft ozone for NEI2008 runs. 

Table A.1 shows the statistics of surface ozone for the 1Hr-OA and No-OA cases. Interestingly, 
both cases had very close correlation of 0.72 and 0.73. However, the mean biases in the OA case 
were lower by 3.2 ppb, which helped raise the IOA from 0.78 to 0.83. It was interesting that the 
model standard deviation increased in the OA case and matched better with observation. The 
improvement in IOA was slightly less in temperature and winds. 

Table A.1. Statistics of ozone for CMAQ simulations – NEI2008, header information is in Table 
5 of Pre-Final Report. 

Case N Corr IOA RMSE MAE MB O_M M_M O_SD M_SD 

No-OA 33308 0.72 0.78 14.9 12.3 9.3 24.4 33.7 16.5 14.1 
1Hr-OA 33308 0.73 0.83 13.8 11.0 6.1 24.4 30.6 16.5 17.4 
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Figure A.1. Ozone time series of La Porte (C556) between 09/24_00 to 09/28_00 CST of 2013 

CAMS 556 (La Porte) has the highest hourly ozone reading among all the sites in September, 
which occurred at 13 CST on 09/25. Figure A.1 plots the ozone time series during 09/24-09/27. 
The model failed to recreate the peak ozone on the 25th – which is likely due to model’s inability 
to reproduce the small-scale wind shifts during the morning hours around the ship channel and 
the Galveston Bay. Still the 1hr-OA case matched better than the No-OA case in late 24th and 
around noon of 25th. The peak hours of 1hr-OA case matched well to observations: 12 to 15 
CST, though much less pronounced. On the other hand, the ozone in No-OA case peaked at 10 
CST and trended lower for the rest of the day. 

Figure A.2 showed hourly ozone vertical profiles from 08 CST to 16 CST on September 25th, 
with ozone being displayed on x-axis and height on y-axis. One observation dot was averaged 
over all the grid cells in the same model layer. For example, during 08-09 CST, aircraft flew 
passing 30 cells located in the model’s 5th layer. This layer had a mid-layer height of 287.5 m. 
The averaged ozone of the 30 cells was 56 ppb. It should be noted that the observed ozone were 
averaged over multiple measurements in the same model cell, such that they could be properly 
compared to model values. The 08 and 09 CST profiles showed there was a high ozone layer 
with average ozone of ~65 ppb, stretching from 450 m to 1200 m height. In comparison, all 
model runs had lower ozone in this layer. The model biases were about -10 ppb at 08 CST and 
grew to -20 ppb at 09 CST. The discrepancies between low surface ozone and ozone aloft may 
be explained by the earlier reversal of aloft winds: winds at surface layer still showed light 
northwesterly in the early morning while winds aloft already changed to southerly. The observed 
ozone rose continuously in following hours yet model simulated ozone stagnated around 60 ppb 
from surface up to 2000 m until 15 CST. At 16 CST, the ozone of OA case in 0-1 km layer rose 
20 ppb over previous hours yet the base case ozone increased only a few ppb. Although different 
in magnitude, ozone aloft had a few similar features to the surface ozone. First, the model missed 
the observed high ozone in the afternoon by a large margin. For example, the base case 
underpredicted 0-1 km level ozone by up to 50 ppb. The primary cause for the lower ozone 
production was likely model’s wind fields as both model and observation had clear sky in 
industrial area and Galveston Bay. Second, nudging clearly helped reducing the ozone biases 
aloft. In most plots of Figure A.2, the OA case had lower biases than the base case. The largest 
difference was at 16 CST, when nudging reduced biases from ~45 ppb to ~30 ppb in the 300 – 
1000 m layer. 
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Figure A.2. Vertical ozone profiles from 09/25_08 CST to 09/25_16 CST of 2013 for two cases 

of No-OA and 1Hr-OA compared with corresponding observations. 
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Appendix B 

Audits of data quality 

Audit Personnel 

Dr. Xiangshang Li, Research Scientist, University of Houston 

Data to be audited 

Model simulation period covered 30 days. We audited 10% data, i.e., a 3-day period. 

The ozone concentration reached maximum in HGB on September 25, 2013. We audited 3 days: 
from 09/24 to 09/26. All the model input files and output files during the 3-day period were 
examined by Dr. Wonbae Jeon, University of Houston. 

Audit Procedures 

Audit procedures were conducted on WRF input files, which are NARR files, and WRF output 
files which are “wrfout” files. Important parameters such as wind and temperature simulations 
were plotted to determine whether they are reasonable. The inputs for CMAQ are emission files 
and MCIP output. Again, important parameters such as NO2 emissions have been checked and 
analyzed. Important output parameters such as O3, HCHO, NO2 and NO have been checked. 

For observation data model and observation comparison plots were created and statistical 
evaluation for the 3-day period were performed. Further, the 30-day period simulations results 
were included in the final report. 

 

Appendix C 

WRF Namelist 

&time_control 

 run_days                            = 4, 

 run_hours                           = 0, 

 run_minutes                         = 0, 

 run_seconds                         = 0, 

 start_year                          = 2013, 2013, 

 start_month                         = 08, 08, 

 start_day                           = 29, 29, 

 start_hour                          = 00, 00 

 start_minute                        = 00, 00 

 start_second                        = 00, 00 

 end_year                            = 2013, 2013, 

 end_month                           = 10, 10, 
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 end_day                             = 03, 03, 

 end_hour                            = 00, 00 

 end_minute                          = 00, 00 

 end_second                          = 00, 00 

 interval_seconds                    = 10800 

 input_from_file                     = .true.,.true., 

 history_interval                    = 60, 60, 

 frames_per_outfile                  = 12, 12, 

 auxinput11_interval                 = 60, 60, 

 auxinput11_end_h                    = 186, 186, 

 restart                             = .false., 

 restart_interval                    = 720, 

 io_form_history                     = 2 

 io_form_restart                     = 2 

 io_form_input                       = 2 

 io_form_boundary                    = 2 

 debug_level                         = 0 

 / 

 

 &domains 

 time_step                           = 60, 

 time_step_fract_num                 = 0, 

 time_step_fract_den                 = 1, 

 max_dom                             = 2, 

 e_we                                = 161, 97, 

 e_sn                                = 145, 79, 

 e_vert                              = 28,   28, 

 p_top_requested                     = 10000, 

 num_metgrid_levels                  = 30, 

 num_metgrid_soil_levels             = 4, 

 dx                                  = 12000, 4000, 

 dy                                  = 12000, 4000, 

 grid_id                             = 1,     2, 

 parent_id                           = 0,     1, 

 i_parent_start                      = 1,     93, 

 j_parent_start                      = 1,     45, 

 parent_grid_ratio                   = 1,     3, 

 parent_time_step_ratio              = 1,     3, 

 feedback                            = 1, 

 smooth_option                       = 0 

 eta_levels                          = 1.000, 0.996, 0.990, 0.980, 0.970, 

                                       0.960, 0.950, 0.940, 0.930, 0.920, 

                                       0.910, 0.895, 0.880, 0.865, 0.850, 

                                       0.825, 0.800, 0.775, 0.750, 0.720, 

                                       0.660, 0.570, 0.475, 0.370, 0.250, 
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                                       0.145, 0.045, 0.000 

 / 

 

 &physics 

 mp_physics                          = 2,     2, 

 ra_lw_physics                       = 4,     4, 

 ra_sw_physics                       = 5,     5, 

 radt                                = 10,    10, 

 sf_sfclay_physics                   = 1,     1, 

 sf_surface_physics                  = 2,     2, 

 bl_pbl_physics                      = 1,     1, 

 bldt                                = 0,     0, 

 cu_physics                          = 1,     1, 

 cudt                                = 5,     5, 

 isfflx                              = 1, 

 ifsnow                              = 1, 

 icloud                              = 1, 

 surface_input_source                = 1, 

 num_soil_layers                     = 4, 

 sf_urban_physics                    = 0,     0, 

 maxiens                             = 1, 

 maxens                              = 3, 

 maxens2                             = 3, 

 maxens3                             = 16, 

 ensdim                              = 144, 

 cugd_avedx                          = 3, 

 / 

 

 &fdda 

 grid_fdda                           = 1,      1, 

 gfdda_inname                        = "wrffdda_d<domain>", 

 gfdda_end_h                         = 186,    186, 

 gfdda_interval_m                    = 180,    180, 

 fgdt                                = 0,      0, 

 if_no_pbl_nudging_uv                = 0,      0, 

 if_no_pbl_nudging_t                 = 1,      1, 

 if_no_pbl_nudging_q                 = 1,      1, 

 if_zfac_uv                          = 0,      0, 

  k_zfac_uv                          = 10,     10, 

 if_zfac_t                           = 0,      0, 

  k_zfac_t                           = 10,     10, 

 if_zfac_q                           = 0,      0, 

  k_zfac_q                           = 10,     10, 

 guv                                 = 0.0003,   0.0003, 

 gt                                  = 0.0003,   0.0003, 
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 gq                                  = 0.0003,   0.0003, 

 if_ramping                          = 1, 

 dtramp_min                          = 60.0, 

 io_form_gfdda                       = 2, 

 grid_sfdda                          = 1, 1, 

 sgfdda_inname                       = "wrfsfdda_d<domain>", 

 sgfdda_end_h                        = 186, 186, 

 sgfdda_interval_m                   = 60, 60, 

 io_form_sgfdda                      = 2, 

 guv_sfc                             = 0.0003,0.0003, 

 gt_sfc                              = 0.0003, 0.0003, 

 gq_sfc                              = 0.0003, 0.0003, 

 rinblw                              = 250.0, 

 obs_nudge_opt                       = 1, 1, 

 max_obs                             = 150000, 

 fdda_start                          = 0. 0., 

 fdda_end                            = 99999. 99999., 

 obs_nudge_wind                      = 1,1, 

 obs_coef_wind                       = 4.E-4, 6.E-4, 

 obs_nudge_temp                      = 1, 1, 

 obs_coef_temp                       = 4.E-4, 6.E-4, 

 obs_nudge_mois                      = 0, 0, 

 obs_coef_mois                       = 4.E-4, 6.E-4, 

 obs_rinxy                           = 150., 120. 

 obs_rinsig                          = 0.05, 

 obs_twindo                          = 0.6666667, 0.6666667, 

 obs_npfi                            = 10, 

 obs_ionf                            = 1, 1, 

 obs_idynin                          = 0, 

 obs_dtramp                          = 40. 

 obs_prt_freq                        = 50, 10, 

 obs_prt_max                         = 5, 

 obs_ipf_errob                       = .true. 

 obs_ipf_nudob                       = .true. 

 obs_ipf_in4dob                      = .true. 

 obs_ipf_init                        = .true. 

 / 

 

 &dynamics 

 w_damping                           = 1, 

 diff_opt                            = 1, 

 km_opt                              = 4, 

 diff_6th_opt                        = 0,      0, 

 diff_6th_factor                     = 0.12,   0.12, 

 base_temp                           = 290. 
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 damp_opt                            = 0, 

 zdamp                               = 5000., 5000. 

 dampcoef                            = 0.2,    0.2, 

 khdif                               = 0,      0, 

 kvdif                               = 0,      0, 

 non_hydrostatic                     = .true., .true., 

 moist_adv_opt                       = 1,      1, 

 scalar_adv_opt                      = 1,      1, 

 / 

 

 &bdy_control 

 spec_bdy_width                      = 5, 

 spec_zone                           = 1, 

 relax_zone                          = 4, 

 specified                           = .true., .false., 

 nested                              = .false., .true., 

 / 

 

 &grib2 

 / 

 

 &namelist_quilt 

 nio_tasks_per_group = 0, 

 nio_groups = 1, 

 / 
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